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Although giant viruses have existed for millennia and possibly

exerted great evolutionary influence in their environment. Their

presence has only been noticed by virologists recently with the

discovery of Acanthamoeba polyphaga mimivirus in 2003. Its

virion with a diameter of 500 nm and its genome larger than 1

Mpb shattered preconceived standards of what a virus is and

triggered world-wide prospection studies. Thanks to these

investigations many giant virus families were discovered, each

with its own morphological peculiarities and genomes ranging

from 0.4 to 2.5 Mpb that possibly encode more than 400 viral

proteins. This review aims to present the morphological

diversity, the different aspects observed in host–virus

interactions during replication, as well as the techniques

utilized during their investigation.
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What are giant viruses?
Thetaxonomicclassificationofgiantviruses(GVs)hasbeen

a topic of constant debate, partially due to the difficulty of

reconciling diverging characteristics of viruses that have

been called ‘giant’. Initially, these viruses were inserted in
Current Opinion in Virology 2021, 49:58–67 
the nucleo-cytoplasmic large DNA viruses (NCLDV) a so-

called monophyletic group established before discoveries

includingPhycodnaviridae,Iridoviridae,Poxviridae,Asfarvir-
idae, and Ascoviridae. In 2012, a new order Megavirlaes was

proposed, and grouped viruses that possessed particle and/

or genome size considerably larger than other viruses (>300

nm) and nearing the proportions of small bacteria (e.g.

Haemophilus influenzae, with 1.8 Mbp) [1,2]. Later in

2019,theInternationalCommitteeonTaxonomyofViruses

proposed another form of classification that would group

GVs with other dsDNA viruses that possess a vertical jelly

roll protein fold for the major capsid proteins (Realm

Varidnaviria).Othertaxonomicchangeswerealsoincluded,

suchaschangingtheir inclusion intheNCLDVgrouptothe

new phylum Nucleocitoviricota, and the substitution of the

Megavirales order for the Imitervirales order under the

novel Megaviricetes class. Using the mimiviruses as an

example the current classification establishes the following

organization: Varidnaviria (Realm), Bamdfordvirae (King-

dom),Nucleocytoviricota (Phylum),Megaviricetes (Class),

Imitervirales (Order), Mimiviridae (Family).Even with the

establishment of this classification, the phylogeny debate

willmostlikelycontinueduetotheexistenceofGVsthatare

little understood and/or that possesses unique attributes,

such as mollivirus and pacmanvirus. The continuous dis-

coveries regarding GVs, exacerbated by the advances of

molecular techniques such as metagenomics analysis that

allowsfortheidentificationofnewspeciesinavasterarrayof

data when compared to the conventional methodologies

[3,4], defers a cohesive and accurate phylogenetic classifi-

cation from being realized.

Replication cycle of different giant viruses
Varying considerably in particle morphology and composi-

tion, GVs do share a number of similarities in their replica-

tion cycles (see Figure 1). The initial step of infection

consists of particle internalization by the phagocitic host,

in most cases amoebas, through phagocytosis. Triggering of

said process has been associated with larger particle sizes

(>500 nm) [5], and/or with fibrils present in some GV

surface, whose polysaccharide composition is recognized

by amoeba surface receptors. Among the constituting car-

bohydrates, N-acetylglucosamine (GlcNAc) and (mainly)

mannose were highlighted as being related to such recog-

nition. Mannose saturation experiments during infection
www.sciencedirect.com
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Figure 1

(a) Phagocytosis

(b) Stargate opening

(c) Membrane fusion
and release of viral seed

(e) Host lysis

(d) Viral factory and assembly

Current Opinion in Virology

Proposed replication life cycle of Samba Virus in Acanthamoeba castellanii.

Entry of the virion into the host is mediated via phagocytosis (a). Inside the phagosome, opening of the stargate seal complex is triggered and a

complement of viral proteins is released (b). By an unknown mechanism, the released proteins aid in the fusion of the sac of the virus with the

host membrane, allowing release of the nucleocapsid into the cell (c). A viral factory is established in the cytoplasm, where the viral dsDNA

genome is replicated, and viral proteins are translated ultimately leading to assembly of viral progeny (d). The newly formed virions fill the host

cell, leading to lysis and release (e).
resulted in reduction of cell adherence by the viruses [6,7�].
Some GVs are smaller than 500 nm but still enter the cell

through phagocytosis, having developed strategies to

bypass the minimum size requirement. One such example

are GVs within the Marseilleviridae, that have �250 nm

icosahedral particles. These viruses either group together

forming a large viral aggregate, or are available in the

environment inside vesicles >1000 nm in size, allowing

them to be effectively phagocytized [7�,8–10]. It’s worth

mentioning that there are other cell invasion mechanisms

among the Megaviricettes that do not involve phagocytosis,

with one example being the marine viruses from the Phy-
codnaviridae Family [11,12]. This family comprises viruses

with sizes ranging between 100�220 nm that mainly infect

algae [12]. Although some members of this family enter the

cell through endocytosis, in a similar manner to other giant

viruses,otherssuchasthosefromtheChlorovirusgenushave
a remarkably different entry pathway that resembles those

of bacteriophages [11,12]. One such example is the Para-
mecium bursaria chlorella virus (PBCV-1) whose infection

occurs when the virus adheres to the cell wall with a long

spike structure present at one of the capsid vertex first
www.sciencedirect.com 
establishingcontactwiththehostsurfaceandexternalfibers

helping the virus attachment [11]. It is believed that the

spike penetrates the cell wall using the associated enzymes

activity degrade it, thus allowing the fusion of the viral and

the cell membrane permitting the genome injection while

leaving an empty shell at the cell surface [11,12].

Upon the initial uptake, particles engulfed into phago-

somes ‘escape’ from this inhospitable cell compartment

via fusion between a viral lipid membrane and the vesic-

ular membrane, thus delivering either a portion of the

viral content to the host cytoplasm, or in some cases, the

entire virion. GVs are generally sealed by a protein

complex with morphology and release mechanisms that

vary considerably among families. Capsids within Mimi-
viridae are sealed by a stargate, located at a unique vertex

of the icosahedral particle [13��]. Pandoraviridae, Cedrat-
viridae, and Pithoviridae families present non-isocahedral

GVs with an apical pore portal, which can vary in number

and morphology. Singular pores, or two pores located at

opposite extremities, are sealed by a cork-like structure

[14–17]. Other families possess unique seal structures
Current Opinion in Virology 2021, 49:58–67
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Table 1

Summary of known structural giant and biological giant viruses’ features

Families Capsid

morphology

Average

particle

size

Fibrils Number

of layers

Genome

release portal

Known

hosts

Average

replicative

cycle

length

Viral

factory

Morphogenesis and virion

release

References

Mimiviridae Icosahedral 650�1500

nm

Lineage A

Mimivirus

and

Tupanvirus

Fibrils

cover the

whole

capsid

except for

the stargate

region.

7 layers. Stargate Amoeba

(Acanthamoeba/

Vermamoeba

vermiformis,

Dyctiostelium

discoideum);

algae;

zooflagellates;

corals (possibly).

The original host

is unknown.

12 hours Mature viral

factory, formed

by an

association of

initial small

replicative

centers.

Electron-dense

and delimited

region.

Particle assembly occurs

at the center and periphery

of the viral factory. After

capsid assembly, the

genome is packed by a

mechanism yet to be

described. Viral particles

are liberated by cellular

lysis.

[7�,13��,35,49,
56,60–62]

Marseilleviridae

Icosahedral

�10 nm

thick

180�250

nm particle

diameter

�12 nm

fibrils with

globular

tips. Covers

the whole

capsid.

One icosahedral layer

encircling the

nucleocapsid.

Not

described

Amoeba

(Acanthamoeba)

24 hours

Large mature

VF, occupying

50% of the

amoeba

cytoplasm;

Electron-dense

region

The endosomes are

recruited to the periphery

of the VF, originating the

membranes that surround

the nucleocapsid. The

newly assembled particles

are reunited in vesicles and

liberated through cellular

lysis.

[7�,8,9,10,
15,63]

The original host

is unknown.

Pandoravidae

Oval

1 mm

length and

0,5 mm

diameter

Fibril matrix

composing

the second

layer of the

particle.

3 layers.

Apical pore in

one

extremity.

Amoeba

(Acanthamoeba)

10–15

hours

Composed of

multiple small

VF, with the first

one being

derived from the

nucleus. The

recruitment of

mitochondria

increases

proportionally to

the number of

VFs formed and

virions

assembled.

Region

electron-lucent.

DNA packaging occurs

parallelly to the capsid

assembly, in the opposite

region to the apical pore.

Viral particles are liberated

through the lysis of the

amoebas, although some

species of this family are

liberated through

exocytosis.

[14,17,15,

25,64]

The outermost layer

with �25 nm

diameter. The middle

layer (�25 nm) is

composed of a fibril

matrix, marked by a

dark coloration. The

third layer (�20 nm) is

turned directly to a

lipid membrane.

Pandoravirus

massiliensis: The

particle exterior is

surrounded by

polysaccharides

similar to those found

on plants cellulose.

The original host

is unknown.
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Table 1 (Continued )

Families Capsid

morphology

Average

particle

size

Fibrils Number

of layers

Genome

release portal

Known

hosts

Average

replicative

cycle

length

Viral

factory

Morphogenesis and virion

release

References

Pithoviridae

Oval

1,35�1,65

length and

750–850

nm width

X

4 layers.

An apical

pore is

present in

one of the

extremities

and is closed

off by cork.

Amoeba

(Acanthamoeba)

10–20

hours

The matures VF

is formed by the

fusion of small

replicative

centers.

Electron-dense

region.

Particles are assembled in

the periphery of the VF. The

recently formed particles

can possess a rectangular

morphology due to the

external matrix that

envelopes them not having

been fully synthesized. In

another moment, some

particles already in the oval

morphology can have its

striated membrane

assembled, achieving the

final stage of maturation.

The mature particles are

released through cellular

lysis.

[15,19,53]

The outermost layer

presents minimum

density. Below it, the

second layer is

embedded in the

integumentary

matrix, above layers

3 and 4. This last one

is considered

putative and

establishes an

interface with the

membrane that

surrounds the viral

genome. The particle

center is encircled by

a lipid membrane

The original host

is unknown.

Cedratvirus*

Oval

750 nm–2

mm length

and 0,4–

0,6 mm

width

X

The external layer is

considerably thick

and composed of

parallel lines.

2 apical pores

present in

both

extremities of

the capsid

closed off by

two corks.

Amoeba

(Acanthamoeba)

24 hours

One large VF.

Region
Particle assembly occurs in

two steps: the closing of

the capsid in the center of

the VF, and the thickening

of its walls in the periphery

of the VF. The mature

particles are released

through cellular lysis.

[16,22,65]
The original host

is unknown.

Electron-lucent

Mitochondrial

recruitment.

Mollivirus*

Spherical

500�600

nm

diameter

Covered by

two to four

layers of

fibrils(with

varying

lengths),

separated

by a

distance of

25 nm.

The 10 nm thick

external layer is

disposed of in two

interspersed 30�40

nm lanes tangent to

the capsid surface.

The inner layer is

composed of a

12�14 nm thick fibril

matrix. The interior of

the particle is

covered by a lipid

membrane.

The portal

structure is

located in a

160�200 nm

diameter

circular sulk.

Amoeba

(Acanthamoeba)

10 hours

The nucleus

acts as a

scaffold for the

VF, resulting in

the loss of

nucleus

morphology.

Particle assembly is

headed by a membrane

prototype that interacts

with the plane pole

(seemingly membranous

structure) in its center. This

pole orients the spatial

organization of the

membrane that comprises

the particles. The

internalization of the

particle content is

regulated by the interaction

with another structure,

located at the opposite end

of the plane pole. The viral

particles are released by

exocytosis. Replication

cycle is not lytic.

[15,19,66,67]

The original host

is unknown.

w
w
w
.s
c
ie
n
c
e
d
ire

c
t.c

o
m

 
C
u
rre

n
t

 O
p
in
io
n

 in
 V
iro

lo
g
y

 2
0
2
1
,

 4
9
:5
8
–
6
7



6
2

 
V
iru

s
 s
tru

c
tu
re

 a
n
d

 e
x
p
re
s
s
io
n

Table 1 (Continued )

Families Capsid

morphology

Average

particle

size

Fibrils Number

of layers

Genome

release portal

Known

hosts

Average

replicative

cycle

length

Viral

factory

Morphogenesis and virion

release

References

Faustoviridae Icosahedral

with T = 277.

External

capsid =

�260 nm

diameter.

Inner core

= �160–

190 nm

diameter.

200�240

nm

Long and

thick fibers

distributed

along the

inner

capsid.

Two layers organized

in an external capsid

(T = 277) and an inner

core (T = 16).

Not

described

Vermamoeba

vermiformis (VV)

is the only known

host.

18�24

hours.

The nucleus

loses its

morphology.

Viral factory

surrounded by

mitochondria.

The assembly of the inner

core occurs

simultaneously with the

genome packaging. Later

the external capsid is

synthesized and interacts

with the nucleocapsid

through putative

encroaching regions. The

mature particles are

released through cellular

lysis.

[7�,15,20,23]

Pacmanvirus*

Icosahedral

with T = 309
175 nm X

A membrane covers

the particle’s core.

Absence of

capsid

opening.

Virus

escapes

phagosome

with intact

virion and

interacts with

the

mitochondria.

Amoeba

(Acanthamoeba)

8 hour
Mature viral

factory
Not described. [21]

The original host

is unknown.

Orpheovirus * Oval 900�1100

nm length

and �500

nm

diameter.

Fibril layer

covering

the whole

virion.

Virion is composed of

5 layers, with the last

one in direct contact

with the core.

Ostiole is

located in one

of the

particle’s

extremities.

Solely infects

Vermamoeba

vermiformis

30 hours. One large VF.

Region

electron-lucent

Mitochondrial

recruitment.

Initially, semi-circular

structures suffer

expansion, and then are

filled with internal viral

content. Virion liberation

occurs through cellular

lysis and exocytosis.

[18�,46]
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such as the Orpheovirus having an osteole-like portal

[18�], and Molliviridae having a yet to be named structure

[19]. Alternatively, members of the Marseilleviridae and

the Pacmanvirus families have no known capsid opening

[8,10,20,21]. Members of the Marseilleviridae have parti-

cles enveloped by one or more membranes. These mem-

branes are derived from the host endoplasmic reticulum

and drive fusion with the phagosome allowing the entire

virion to enter the cytoplasm [7�,8,10]. In early stages of

infection, Pacmanvirus particles were observed near

mitochondria suggesting possible interactions with the

organelle, even in the absence of obvious membrane

fusion [21]. A summary of the above information is shown

in Table 1. After the genome is transferred to the cyto-

plasm, the host cell undergoes varying degrees of reorga-

nization that culminates in the formation of a viral factory.

A common modification is the recruitment of organelles

such as endosomes and mitochondria to the periphery of

the viral factory. In most GVs, the viral factory forms near

the intact nucleus [7�,8,10,15,21,22]. The size and num-

ber of factories are also a point of divergence among GV

families with most producing only one viral factory. The

viral factories from Mimiviridae, Marseileviridae, Pithovir-
idae, Faustoviridae, and Pacmanvirus families are charac-

terized by a single large, notably electron-dense structure

when mature [7�,8,10,15,20,21,23]. On the other hand, the

viral factories of the Cedrativiridae, Pandoraviridae,
Orpheuvirus, and Molliviridae were observed to be elec-

tron-lucent [17,18�,22,24,25]. In both Pandoraviridae and

Molliviridae the nucleus structure is disrupted and this

serves as a scaffold for the formation of multiple small

initial replication centers [14,17,19]. In Mollivirus, these

small centers fuse together forming a large mature viral

factory [19]. Pandoravidae is peculiar in that these small

replication centers remain separated and thus form mul-

tiple small viral factories [14,17]. It is yet to be deter-

mined the role of membranes in the formation and

maintenance of viral factories [25–30].

The DNA replication and virion assembly occur in the

virus factory. However, particle assembly and encapsida-

tion of the genome occur in different steps, depending on

the GV family. For example, in pandoraviruses DNA

packaging is located in the opposite extremity of the

apical pore, and occurs as the capsids are being assem-

bled. Conversely, genome packing in mimiviruses hap-

pens only after the complete capsid formation, through a

yet unknown process/feature. It was observed that DNA

is packaged via one of the facets [17,25,31].

The last step of the life-cycle is the release of newly

assembled viral progeny. In the vast majority of giant

viruses, this occurs via cell lysis. In the final stage of

Pithoviridae infections, the viral factory is composed of

both mature and incomplete particles, and saturation

within the amoeba cytoplasm causes lysis [15]. In Mar-
seilleviridae assembled capsids are organized inside
www.sciencedirect.com 
vesicles [7�,8,10]. Exocytosis is another means of viral

release used by molliviruses [19]. Although it is

believed that the endosome recruited during viral fac-

tory formation can act in the release of the viral progeny

enabling exocytosis [10], it is yet to be confirmed if such

release mechanism is present in other GVs families.

Techniques for characterization of giant
viruses: current progress and gargantuan
challenges
GVs are just how they sound—giant. Unfortunately, we

know very little about the molecular organization of these

particles at the atomic level and many outstanding ques-

tions remain. In what way is the seal complex opening

governed? To what is the great stability of the particles

owed? Do fibers impart advantages during infection? How

is genome packing coordinated? The relationship between

GVs andtheir hosts raises further questions. Ishost invasion

coordinated with high specificity and receptor recognition?

What determines the host range? How does resistance in

hosts arise? How is lysis synchronized? Are there selective

pressures on giants and their hosts? Are they evolving to

become more complex or more simplistic? Here we review

current techniques for investigating GV structure, genome,

life-cycle, and explore potential challenges and limitations

to the available technology (see Figure 2).

Thegenomicagehasrevolutionizedbiology.Progressively,

thelimitationsofsequencinghavebeenreducedandefforts

to sequence whole genomes have improved scaling in

several orders of magnitude [32]. Advancements in meth-

odology, a higher capacity for computation, and better data

management have led to drastically lower costs, time for

assembly, and the creation of national repositories to make

genomicdata publicand readily available formining.While

this has shed unprecedented light on both the diversity and

conservation of organisms within and across biomes, not all
of the data is easily interpreted and there are major gaps in our
understanding. GVs genomes are large and complex with

many containing over 1000 open reading frames [33,34].

Mining of GVs genomes has resulted in challenging long-

standing dogmas. For example, GVs nearly meet the

requirements of life, lacking only ribosomes [35], and have

illustrated the potential for a fourth domain [36]. Through

metagenomics analysis the identification of many relevant

genes related to metabolism and macromolecules assembly

pathway was possible [3,4]. Yet, enigmatic regions are

present in virtually every GV genome contained within

modern data bases. So-called hypothetical proteins, mor-

ons, and ORFans are spread throughout GVs genomes,

occupying between �40�90% of metagenomic sequences,

and are particularly problematic to interpret when novel

viruses emerge [37]. This is an especially important area to

consider here as many new GVs are being discovered at an

astonishing rate, highlighting the burden of viral metage-

nomic dark matter. The majority of GVs genomes do not

have anysignificantnucleotidesequence identity toknown
Current Opinion in Virology 2021, 49:58–67
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Figure 2
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Overview of current techniques utilized in studying Giant Viruses and the outstanding areas requiring new approaches to study.

Cartoon representation of phylogenic analysis (tree not representative of actual ancestry), range of host organisms, as well as metagenomics are

used to understand and classify GVs and their evolutionary relationships (diversity panel). The replication of GVs inside their host organisms is

currently being studied using light, fluorescence, and transmission electron microscopies, as well as by using infectivity assays (life cycle panel).

Because of variation in capsid shape and features, the morphologies of GVs are investigated using electron microscopic approaches (scanning,

transmission, and cryogenic). The stability of the capsids and their seals (if present) are studied through biochemical treatments as well as atomic

force microscopy to observe the conditions necessary for opening of the virions (morphology and stability panel). Limitation in current techniques

reduces the ability to fully study some aspects of GV replication such as the dynamics of viral factory formation and the forces behind host cell

lysis. Additionally, the ability to understand the synergy/function of the released proteome, and the inability to easily edit the genome of GVs to

ultimately uncover the full mechanics of virion/host interactions are still limited by available techniques (unknown panel).
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organisms. Adding to the complexity is the discovery that

someGVtranscriptsneedsplicing,requiringtranscriptomic

as well as metagenomic data for interpretation [38].

Approaches used to probe the proteomic landscape of

GVs face similar limitations as GV fit into a category of

>500 viral proteins, occupying a space filled by less than 8%

of the entire virome [39]. Of these proteins, many do not

match known databases, or have known functions. More

than 50% of virion particles for Samba and Tupanvirus are

classified as ‘unknown’ [13��,60]. Even more astonishing is

that >90% of Pandovirus [14] and newly discovered

‘Yaravirus’ are comprised almost entirely of ORFans [40�

]. Advances in computational modeling to predict protein

structures from amino acid sequences such as Alpha Fold

[41] holds the promise of assigning structure and therefore

also inferring function to unveil hidden secrets of viral

metagenomic dark matter. Additionally, in silico methods

are also emerging as a way to examine GV structure and

assembly.Yet, thesemethodsarenotquite readyforroutine

use.Foratimeat least,experimentallyderivedorconfirmed

structures and/or functions of giant virus proteins will

remain necessary. Lastly, genetic manipulations within

giantvirusesor theirhosts isnotcommonplaceandamoebas

are polyploid [42,43], hindering the standard ‘knock out the

gene and see what happens approach’ widely used in classic

bacteriophage genetics and other fields. Although,

advances in CRISPR-mediated gene editing have allowed

some initial studies in Dictyostelium [44��,45] it may be some

time before this becomes a widespread approach in giant

virus research. As a result, we cannot understand the struc-

ture and function of the majority of GV proteins using

metagenomics, proteomics or predictions alone.

So what are these particles made of and how do we

identify key players located within GV virions? Imaging

infected cells through the use of TEM and live fluores-

cence microscopy has led to a thorough understanding of

cellular ultrastructure and general infection processes

[9,13��,46]. Imaging individual particles with SEM, or

the use of dyes tagging specific biomolecules such as

proteins, fibers, lipids, and nucleic acids has also been

very useful describing general virion architecture [47,48].

More recently, advances in cryo-electron microscopy

have allowed imaging of GVs in a native like state

producing unprecedented views of a variety of viral

assemblies including icosahedral GVs such as Mimivirus

[49], Marseilleviridae [50], CroV [51], and Medusavirus

[52], as well as the non-icosahedral and gargantuan large

Pithovirus sibericum [53]. Cryo-EM is revolutionizing the

details we can see within GVs and recently near-atomic

views of complexes such as the PBCV-1 virion [54] have

been achieved. Since a holistic approach taking into

account the entire genome/particle/cell is difficult at best,

a divide and conquer attack has also been explored.

Recombinant expression in Escherichia coli has been suc-

cessful for purification, structural, and biochemical stud-

ies for individual GV proteins, such as the ChoanoV1
www.sciencedirect.com 
rhodopsin-like protein VirR [55�], enzyme R135 in Mimi-

virus that helps with viral entry [56], and R141 a Mimi-

virus 4,6-dehydratase [57], and others [58,59].

However, these current methods are insufficient to conclu-

sively map out where every individual protein resides

within GV particles or how they all work together synergis-

tically in vivo. Since the dawn of metagenomics we have

become accustomed to relying comfortably on applying

homology methods towards unraveling novel biology. This

is a fantastic approach as we often have a basis for compari-

son and can place new species into context of the greater

whole of the biological world surrounding us. However, the

complexity and novelty of giant viruses effectively bring us

‘back in time’ to an era decades earlier, where the link

between genomic information and the function of any

given gene product was not readily available. We now have

the need to develop new methodologies to traverse this

frontier and we have a long road ahead to fully unlocking all

of the mysteries of GVs.

Conclusions
The virology field has helped life sciences researchers to

understand more complex events in Biology, using virusesas

simpler models to display such cellular events. Not merely

that, scientists were pushed to utilize techniques to under-

stand the biochemical composition, structural arrangement

and life cycle of viruses, with the electron microscopy being

the highlight. The discovery of giant viruses is a ‘wake up

call’ to virologists as it showed us that basic research is an

ever-changing challenge and that we will be surprised for a

long time with new findingson our road to understanding the

structure and biology of giant viruses.
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Finoketti F, Côrrea RA, Cano-Ortiz L, Assis FL, Arantes TS,
Roehe PM, Franco AC: A new marseillevirus isolated in
southern Brazil from Limnoperna fortunei. Sci Rep 2016, 6:1-8.

11. Van Etten JL, Agarkova IV, Dunigan DD: Chloroviruses. Viruses
2019, 12:20.

12. Sobhy H: A comparative review of viral entry and attachment
during large and giant dsDNA virus infections. Arch Virol 2017,
162:3567-3585.

13.
��

Schrad JR, Abrahão JS, Cortines JR, Parent KN: Structural and
proteomic characterization of the initiation of giant virus
infection. Cell 2020, 181:1046-1061.e6.

This paper demonstrates the vast array of techniques that can be
implemented to analyze different aspects of giant viruses, while also
revealing important information about mimiviruses’ structure and
proteome.

14. Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M,
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